大数据文摘授权转载自夕小瑶的卖萌屋
作者:python
近期,ChatGPT成为了全网热议的话题。ChatGPT是一种基于大规模语言模型技术(LLM, large language model)实现的人机对话工具。但是,如果我们想要训练自己的大规模语言模型,有哪些公开的资源可以提供帮助呢?在这个github项目中,人民大学的老师同学们从模型参数(Checkpoints)、语料和代码库三个方面,为大家整理并介绍这些资源。接下来,让我们一起来看看吧。资源链接:
https://github.com/RUCAIBox/LLMSurvey论文地址:
https://arxiv.org/pdf/2303.18223.pdf模型参数从已经训练好的模型参数做精调、继续训练,无疑可以极大地降低计算成本。那目前有哪些开源的大模型参数,可以供我们选择呢?第一类是100~1000亿参数的模型。这类模型除了LLaMA(650亿)之外,参数范围都集中在100~200亿之间。具体而言,包括:LLaMA[1], mT5[2], T0[3], GPT-NeoX-20B[4], CodeGen[5], UL2[6], Flan-T5[7], mT0[8], PanGu-α[9]。其中,Flan-T5经过instruction tuning的训练;CodeGen专注于代码生成;mT0是个跨语言模型;PanGu-α有大模型版本,并且在中文下游任务上表现较好。第二类是超过1000亿参数规模的模型。这类模型开源的较少,包括:OPT[10], OPT-IML[11], BLOOM[12], BLOOMZ[13], GLM[14], Galactica[15]。参数规模都在1000亿~2000亿之间。其中,OPT是专为开源和大模型复现提出的;BLOOM 和 BLOOMZ具有跨语言能力;Galactica, GLM, 和 OPT-IML都是经过instruction tuning的。这些模型参数大多使用几百到上千块显卡训练得到。比如GPT-NeoX-20B(200亿参数)使用了96个A100-SXM4-40GB GPU,LLaMA(650亿参数)使用了2048块A100-80G GPU学习了21天,OPT(1750亿参数)使用了992 A100-80GB GPU,GLM(1300亿参数)使用了768块DGX-A100-40G GPU训练了60天。除了这些可供公开下载参数的模型之外,OpenAI还提供在他们的服务器上精调GPT-3模型的服务,可以选择的初始模型参数包括babbage(GPT-3 1B), curie(GPT-3 6.7B)和 davinci(GPT-3 175B)。
你 发表评论:
欢迎